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Abstract

This paper discusses a discrete multispecies Gilpin-Ayala mutualism system. We first achieve the permanence

of the system. Assume that the coefficients in the system are almost periodic sequences, we obtain the sufficient

conditions for the existence of a unique almost periodic solution which is globally attractive. One example together

with numerical simulation indicates the feasibility of the main result.
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1 Introduction

The mutualism system has been studied by more and more scholars. Topics such as permanence, global

attractivity and global stability of continuous and discrete mutualism system were extensively investigated(see

[1–13] and the references cited therein). Recently, as far as the discrete multispecies Lotka-Volterra ecosystem

is concerned(see [12, 14–20] and the references cited therein). Chen [15] studied the dynamic behavior of the

discrete n+m-species Lotka-Volerra competition predator-prey systems

xi(k + 1) = xi(k) exp

[
bi(k)−

n∑
l=1

ail(k)xl(k)−
m∑
l=1

cil(k)yl(k)

]
, i = 1, 2, · · · , n,

yj(k + 1) = yj(k) exp

[
− rj(k) +

n∑
l=1

djl(k)xl(k)−
m∑
l=1

ejl(k)yl(k)

]
, j = 1, 2, · · · ,m.

Sufficient conditions which ensure the permanence and the global stability of the systems are obtained; for

periodic case, sufficient conditions which ensure the existence of a globally stable positive periodic solution of

the systems are obtained.

Notice that the investigation of almost periodic solutions for difference equations is one of most important

topics in the qualitative theory of difference equations due to its applications in biology, ecology, neural

network, and so forth(see [6, 11–14, 21–27] and the references cited therein). Liao and Zhang [11] studied a

discrete mutualism model with variable delays of the forms
N1(n+ 1) = N1(n) exp

{
r1(n)

[
K1(n) + α1(n)N2(n− µ2(n))

1 +N2(n− µ2(n))
−N1(n− ν1(n))

]}
,

N2(n+ 1) = N2(n) exp

{
r2(n)

[
K2(n) + α2(n)N1(n− µ1(n))

1 +N1(n− µ1(n))
−N2(n− ν2(n))

]}
.

By means of an almost periodic functional hull theory, sufficient conditions are established for the existence

and uniqueness of globally attractive almost periodic solution to the system.

Motivated by above, in this paper, we are concerned with the following discrete multispecies Gilpin-Ayala

mutualism system

xi(k + 1) = xi(k) exp

{
ai(k)− bi(k)(xi(k))

θii +
n∑

j=1,j ̸=i

cij(k)
(xj(k))

θij

dij + (xj(k))θij

}
, (1.1)
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where i = 1, 2, · · · , n; xi(k) stand for the densities of species xi at the kth generation, ai(k) represent the

natural growth rates of species xi at the kth generation, bi(k) are the intraspecific effects of the kth generation

of species xi on own population, and cij(k) measure the interspecific mutualism effects of the kth generation

of species xj on species xi(i, j = 1, 2, · · · , n, i ̸= j), dij are positive control constants. θii and θij are positive

constants.

Denote as Z and Z+ the set of integers and the set of nonnegative integers, respectively. For any bounded

sequence {g(n)} defined on Z, define gu = sup
n∈Z

g(n), gl = inf
n∈Z

g(n).

Throughout this paper, we assume that:

(H1) {ai(k)}, {bi(k)} and {cij(k)} are bounded nonnegative almost periodic sequences such that

0 < ali ≤ ai(k) ≤ aui , 0 < bli ≤ bi(k) ≤ bui , 0 < clij ≤ cij(k) ≤ cuij ,

From the point of view of biology, in the sequel, we assume that x(0) = (x1(0), x2(0), · · · , xn(0)) > 0.

Then it is easy to see that, for given x(0) > 0, the system (1.1) has a positive sequence solution x(k) =

(x1(k), x2(k), · · · , xn(k))(k ∈ Z+) passing through x(0).

The remaining part of this paper is organized as follows: In Section 2, we will introduce some definitions

and several useful lemmas. In the next section, we establish the permanence of system (1.1). Then, in Section

4, we establish sufficient conditions to ensure the existence of a unique positive almost periodic solution which

is globally attractive. The main results are illustrated by an example with numerical simulation in Section 5.

Finally, the conclusion ends with brief remarks in the last section.

2 Preliminaries

Firstly, we give the definitions of the terminologies involved.

Definition 2.1( [28]) A sequence x : Z → R is called an almost periodic sequence if the ε-translation set of x

E{ε, x} = {τ ∈ Z :| x(n+ τ)− x(n) |< ε, ∀n ∈ Z}

is a relatively dense set in Z for all ε > 0; that is, for any given ε > 0, there exists an integer l(ε) > 0 such

that each interval of length l(ε) contains an integer τ ∈ E{ε, x} with

| x(n+ τ)− x(n) |< ε, ∀n ∈ Z.

τ is called an ε-translation number of x(n).

Definition 2.2( [29]) A sequence x : Z+ → R is called an asymptotically almost periodic sequence if

x(n) = p(n) + q(n), ∀n ∈ Z+,

where p(n) is an almost periodic sequence and lim
n→∞

q(n) = 0.

Definition 2.3( [30]) A solution (x1(k), x2(k), · · · , xn(k)) of system (1.1) is said to be globally attractive if

for any other solution (x∗
1(k), x

∗
2(k), · · · , x∗

n(k)) of system (1.1), we have

lim
k→+∞

(x∗
i (k)− xi(k)) = 0, i = 1, 2, · · · , n.

Lemma 2.1( [31]) If {x(n)} is an almost periodic sequence, then {x(n)} is bounded.

Lemma 2.2( [32]) {x(n)} is an almost periodic sequence if and only if, for any sequence mi ⊂ Z, there

exists a subsequence {mik} ⊂ {mi} such that the sequence {x(n+mik)} converges uniformly for all n ∈ Z as

k → ∞. Furthermore, the limit sequence is also an almost periodic sequence.

Lemma 2.3( [33]) Assume that sequence {x(n)} satisfies x(n) > 0 and

x(n+ 1) ≤ x(n) exp{a(n)− b(n)xα(n)} (2.1)
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for n ∈ N , where a(n) and b(n) are non-negative sequences bounded above and below by positive constants,

α is a positive constant. Then

lim sup
n→+∞

x(n) ≤
(

1

αbl

) 1

α
exp{au − 1

α
}. (2.2)

Lemma 2.4( [33]) Assume that sequence {x(n)} satisfies

x(n+ 1) ≥ x(n) exp{a(n)− b(n)xα(n)}, n ≥ N0,

lim sup
n→+∞

x(k) ≤ x∗ and x(N0) > 0, where a(n) and b(n) are non-negative sequences bounded above and below

by positive constants, α is a positive constant and N0 ∈ N . Then

lim inf
n→+∞

x(n) ≥
(
al

bu

) 1

α
exp{al − bu(x∗)α}. (2.3)

3 Permanence

In this section, we establish the permanence result for system (1.1).

Proposition 3.1 Assume that (H1) holds. Then any positive solution (x1(k), x2(k), · · · , xn(k)) of system

(1.1) satisfies

mi ≤ lim inf
k→+∞

xi(k) ≤ lim sup
k→+∞

xi(k) ≤ Mi, (3.1)

where

Mi =

(
1

θiibli

) 1

θii exp

{
aui +

n∑
j=1,j ̸=i

cuij −
1

θii

}
,

mi =

(
al

bu

) 1

θii exp{al − bu(Mi)
θii},

i = 1, 2, · · · , n.
Proof. From the equations of system (1.1), we have

xi(k) exp

{
ai(k)− bi(k)(xi(k))

θii

}
≤ xi(k + 1) ≤ xi(k) exp

{
aui +

n∑
j=1,j ̸=i

cuij − bi(k)(xi(k))
θii

}
.

As the direct conclusion of Lemma 2.3 and 2.4, the inequality (3.1) is completed.

Theorem 3.2 Assume that (H1) holds, then system (1.1) is permanent.

Proposition 3.3 Assume that (H1) holds. Then Ω ̸= Φ.

Proof. By the almost periodicity of {ai(k)}, {bi(k)} and {cij(k)}, there exists an integer valued sequence

{δp} with δp → ∞ as p → ∞ such that

ai(k + δp) → ai(k), bi(k + δp) → bi(k), cij(k + δp) → cij(k), as p → +∞.

Let ε be an arbitrary small positive number. It follows from Theorem 3.1 that there exists a positive

integer N0 such that

mi − ε ≤ xi(k) ≤ Mi + ε, k > N0.

Write xip(k) = xi(k + δp) for k ≥ N0 − δp and p = 1, 2, · · · . For any positive integer q, it is easy to see

that there exists a sequence {xip(k) : p ≥ q} such that the sequence {xip(k)} has a subsequence, denoted by

{xip(k)} again, converging on any finite interval of Z as p → ∞. Thus we have a sequence {yi(k)} such that
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xip(k) → yi(k) for k ∈ Z as p → +∞.

This, combining with

xi(k + 1 + δp) = xi(k + δp) exp

{
ai(k + δp)− bi(k + δp)(xi(k + δp))

θii +

n∑
j=1,j ̸=i

cij(k + δp)
(xj(k + δp))

θij

dij + (xj(k + δp))θij

}
, i = 1, 2, · · · , n

gives us

yi(k + 1) = yi(k) exp

{
ai(k)− bi(k)(yi(k))

θii +
n∑

j=1,j ̸=i

cij(k)
(yj(k))

θij

dij + (yj(k))θij

}
, i = 1, 2, · · · , n.

We can easily see that {yi(k)} is a solution of system (1.1) and mi − ε ≤ yi(k) ≤ Mi + ε for k ∈ Z. Since ε is

an arbitrary small positive number, it follows that mi ≤ yi(k) ≤ Mi and hence we complete the proof.

4 Almost periodic solution

The main results of this paper concern the global attractivity of almost periodic solution of system (1.1)

with condition (H1).

Theorem 4.1 Assume that (H1) and

(H2) ρi = max{|1− θiib
l
im

θii
i |, |1− θiib

u
i M

θii
i |}+

n∑
j=1,j ̸=i

θijc
u
ijM

θij
j

dij
< 1, i = 1, 2, · · · , n,

hold. Then system (1.1) admits a unique almost periodic solution which is globally attractive.

Proof. It follows from Proposition 3.3 that there exists a solution (x1(k), x2(k), · · · , xn(k)) of system (1.1)

satisfying mi ≤ xi(k) ≤ Mi, k ∈ Z+. Let {δk} be any integer valued sequence such that δk → +∞ as k → +∞.

Using the Mean Value Theorem, for p ̸= q, we get

lnxi(k + δp)− lnxi(k + δq) =
1

θiiξi(k, p, q)
[(xi(k + δp))

θii − (xθii
i (k + δq))

θii ],

lnxi(k + δp)− lnxi(k + δq) =
1

ηi(k, p, q)
[xi(k + δp)− xi(k + δq)], (4.1)

where ξi(k, p, q) lies between (xi(k + δp))
θii and (xi(k + δq))

θii , and ηi(k, p, q) lies between xi(k + δp) and

xi(k + δq). Then

|(xi(k + δp))
θii − (xi(k + δq))

θii | ≤ θiiM
θii
i | lnxi(k + δp)− lnxi(k + δq)|,

|xi(k + δp)− xi(k + δq)| ≤ Mi| lnxi(k + δp)− lnxi(k + δq)|, k ∈ Z+. (4.2)

For convenience, we introduce φi(k, δp, δq) through

φi(k, δp, δq) = | lnxi(k + δp)− lnxi(k + δq)|, k ∈ Z+, δp > 0, δq > 0. (4.3)
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Thus

φi(k + 1, δp, δq) = | lnxi(k + 1 + δp)− lnxi(k + 1 + δq)|

=

∣∣∣∣ lnxi(k + δp)− lnxi(k + δq)

+ ai(k + δp)− bi(k + δp)(xi(k + δp))
θii +

n∑
j=1

cij(k + δp)
(xj(k + δp))

θij

dij + (xj(k + δp))θij

− ai(k + δq) + bi(k + δq)(xi(k + δq))
θii −

n∑
j=1

cij(k + δq)
(xj(k + δq))

θij

dij + (xj(k + δq))θij

∣∣∣∣
≤

∣∣∣∣ lnxi(k + δp)− lnxi(k + δq)− bi(k + δp)[(xi(k + δp))
θii − (xi(k + δq))

θii ]

∣∣∣∣
+

∣∣∣∣ai(k + δp)− ai(k + δq)

∣∣∣∣+ ∣∣∣∣[bi(k + δq)− bi(k + δp)](xi(k + δq))
θii

∣∣∣∣
+

n∑
j=1,j ̸=i

∣∣∣∣cij(k + δp)
[ (xj(k + δp))

θij

dij + (xj(k + δp))θij
− (xj(k + δq))

θij

dij + (xj(k + δq))θij

]∣∣∣∣
+

n∑
j=1,j ̸=i

∣∣∣∣[cij(k + δp)− cij(k + δq)
] (xj(k + δq))

θij

dij + (xj(k + δq))θij

∣∣∣∣
≤

∣∣∣∣ lnxi(k + δp)− lnxi(k + δq)− bi(k + δp)[(xi(k + δp))
θii − (xi(k + δq))

θii ]

∣∣∣∣
+

∣∣∣∣ai(k + δp)− ai(k + δq)

∣∣∣∣+ ∣∣∣∣[bi(k + δq)− bi(k + δp)](xi(k + δq))
θii

∣∣∣∣
+

n∑
j=1,j ̸=i

∣∣∣∣cij(k + δp)

dij
[(xj(k + δp))

θij − (xj(k + δq))
θij ]

∣∣∣∣
+

n∑
j=1,j ̸=i

∣∣∣∣cij(k + δp)− cij(k + δq)

∣∣∣∣. (4.4)

Let ε1 be an arbitrary positive number. By the almost periodicity of {aij(k)} and {bi(k)} and the boundedness

of {(x1(k), x2(k), · · · , xn(k))}, it follows from Lemmas 2.2 and 2.4 that there exists a positive integer K1 =

K1(ε1) such that, for any δq ≥ δp ≥ K1 and k ∈ Z+(if necessary, we can choose subsequences of {δp} and

{δq}), ∣∣∣∣ai(k + δp)− ai(k + δq)

∣∣∣∣ < ε1
3
,∣∣∣∣[bi(k + δq)− bi(k + δp)](xi(k + δq))

θii

∣∣∣∣ < ε1
3
,

n∑
j=1,j ̸=i

∣∣∣∣cij(k + δp)− cij(k + δq)

∣∣∣∣ < ε1
3
. (4.5)

It follows from (4.1) and (4.3)-(4.5) that, for k ∈ Z+ and δq ≥ δp ≥ K1,

φi(k + 1, δp, δq) <

∣∣∣∣1− θiibi(k + δp)ξi(k, p, q)

∣∣∣∣φi(k, δp, δq)

+
n∑

j=1,j ̸=i

∣∣∣∣θijcij(k + δp)ξij(k, p, q)

dij

∣∣∣∣φj(k, δp, δq) + ε1

≤ ρi max{φi(k, δp, δq)}+ ε1,
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where ξij(k, p, q) lies between (xi(k + δp))
θij and (xi(k + δq))

θij . Then

φi(k, δp, δq) < ρi max{φi(k − 1, δp, δq)}+ ε1,

φi(k − 1, δp, δq) < ρi max{φi(k − 2, δp, δq)}+ ε1,

· · · · · · · · · · · · ,

φi(1, δp, δq) < ρi max{φi(0, δp, δq)}+ ε1.

And we have

φi(k, δp, δq) < ρki max{φi(0, δp, δq)}+
1− ρki
1− ρi

ε1,

for k ∈ Z+ and δq ≥ δq ≥ K1.

Since ρi < 1, for arbitrary ε > 0, there exists a positive integer K = K(ε) > K1 such that, for any

δq ≥ δp ≥ K,

φi(k, δp, δq) <
ε

max
1≤i≤n

{Mi}

for k ∈ Z+.

This combined with (4.2) gives us∣∣∣∣xi(k + δp)− xi(k + δq)

∣∣∣∣ < ε for k ∈ Z+ and δq ≥ δq ≥ K.

It follows from Lemma 2.3 that the sequence {xi(k)}(i = 1, 2, · · · , n) is asymptotically almost periodic. Thus

we can express {xi(k)} as

xi(k) = pi(k) + qi(k), (4.6)

where {pi(k)} are almost periodic in k ∈ Z and qi(k) → 0 as k → ∞. In the following we show that

{pi(k)}(i = 1, 2, · · · , n) ia an almost periodic solution of system (1.1).

Define

fi(k) = ai(k)− bi(k)(pi(k) + qi(k))
θii +

n∑
j=1,j ̸=i

cij(k)
(pj(k) + qj(k))

θij

dij + (pj(k) + qj(k))θij

and

gi(k) = ai(k)− bi(k)(pi(k))
θii +

n∑
j=1,j ̸=i

cij(k)
(pj(k))

θij

dij + (pj(k))θij
, i = 1, 2, · · · , n.

It follows from (1.1), (4.6) and the Mean Value Theorem that

pi(k + 1) + qi(k + 1)

= [pi(k) + qi(k)] exp{fi(k)}

= pi(k)[exp{fi(k)} − exp{gi(k)}] + pi(k) exp{gi(k)}+ qi(k) exp{fi(k)}

= −pi(k) exp{ξi(k)}

[
bi(k)[(pi(k) + qi(k))

θii − (pi(k))
θii ]

+
n∑

j=1,j ̸=i

cij(k)(
(pj(k))

θij

dij + (pj(k))θij
− (pj(k) + qj(k))

θij

dij + (pj(k) + qj(k))θij

]
+ pi(k) exp{gi(k)}+ qi(k) exp{fi(k)},
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where ξi(k) = θi(k)fi(k) + (1− θi(k))gi(k) for some θi(k) ∈ [0, 1]. Thus

pi(k + 1)− pi(k) exp{gi(k)}

= −pi(k) exp{ξi(k)}

[
bi(k)[(pi(k) + qi(k))

θii − (pi(k))
θii ]

+

n∑
j=1,j ̸=i

cij(k)(
(pj(k))

θij

dij + (pj(k))θij
− (pj(k) + qj(k))

θij

dij + (pj(k) + qj(k))θij

]
− qi(k + 1) + qi(k) exp{fi(k)}.

Let

Vi(k) = pi(k + 1)− pi(k) exp{gi(k)}.

By the boundedness of the almost periodic sequences {ai(k)},{bi(k)},{cij(k)},{pi(k)} and the fact that qi(k) →
0 as k → ∞, we obtain

Vi(k) → 0 as k → ∞.

We claim that Vi(k) ≡ 0. Otherwise, there exists an integer k0 ∈ Z such that Vi(k0) ̸= 0. By the almost

periodicity of {ai(k)},{bi(k)},{cij(k)} and {pi(k)}, there exists an integer valued sequence τp such that τp → ∞
as p → ∞ and

ai(k + τp) → ai(k), bi(k + τp) → bi(k), cij(k + τp) → cij(k), pi(k + τp) → pi(k)

uniformly for all k ∈ Z. Then we have

Vi(k0 + τp) = pi(k0 + τp + 1)− pi(k0 + τp) exp{gi(k0 + τp)}

→ pi(k0 + 1)− pi(k0) exp{gi(k0)}

= Vi(k0)

as p → ∞, which contradicts that Vi(k) → 0 as k → ∞. This proves the claim. Hence

pi(k + 1) = pi(k) exp{gi(k)};

that is, {pi(k)} is an almost periodic solution of system (1.1).

Assume that (x1(k), x2(k), · · · , xn(k)) is a solution of system (1.1) satisfying (H1). Let

xi(k) = pi(k) exp{ui(k)}, i = 1, 2, · · · , n.

Then system (1.1) is equivalent to

ui(k + 1) = lnxi(k + 1)− ln pi(k + 1)

= lnxi(k) + ai(k)− bi(k)(xi(k))
θii +

n∑
j=1,j ̸=i

cij(k)
(xj(k))

θij

dij + (xj(k))θij

− ln pi(k)− ai(k) + bi(k)(pi(k))
θii −

n∑
j=1,j ̸=i

cij(k)
(pj(k))

θij

dij + (pj(k))θij

= ui(k)− bi(k)[(xi(k))
θii − (pi(k))

θii ]

+

n∑
j=1,j ̸=i

dijcij(k)[(xj(k))
θij − (pj(k))

θij ]

[dij + (xj(k))θij ][dij + (pj(k))θij ]

= ui(k)− bi(k)(pi(k))
θii

[
(exp{ui(k)})θii − 1

]
+

n∑
j=1,j ̸=i

dijcij(k)(pj(k))
θij [(exp{uj(k)})θij − 1]

[dij + (xj(k))θij ][dij + (pj(k))θij ]
, i = 1, 2, · · · , n.
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Therefore,

ui(k + 1) = ui(k)
(
1− θiibi(k)[pi(k) exp{λi(k)ui(k)}]θii

)
+

n∑
j=1,j ̸=i

dijθijcij(k)uj(k)[pj(k) exp{λj(k)uj(k)}]θij
[dij + (xj(k))θij ][dij + (pj(k))θij ]

, i = 1, 2, · · · , n, (4.7)

where λi(k), λj(k) ∈ [0, 1]. To complete the proof, it suffices to show that

lim
k→+∞

ui(k) = 0, i = 1, 2, · · · , n. (4.8)

In view of (H2), we can choose ε > 0 such that

ρεi = max{|1− θiib
l
i(mi − ε)θii |, |1− θiib

u
i (Mi + ε)θii |}+

n∑
j=1,j ̸=i

θijc
u
ij(Mj + ε)θij

dij
< 1, i = 1, 2, · · · , n.

Let ρ = max{ρεi}, then ρ < 1. According to Theorem 3.2, there exists a positive integer k0 ∈ Z+ such

that

mi − ε ≤ xi(k) ≤ Mi + ε, mi − ε ≤ pi(k) ≤ Mi + ε, i = 1, 2, · · · , n

for k ≥ k0.

Notice that λi(k) ∈ [0, 1] implies that pi(k) exp{λi(k)ui(k)} lies between pi(k) and xi(k), λj(k) ∈ [0, 1]

implies that pj(k) exp{λj(k)uj(k)} lies between pj(k) and xj(k). From (4.7), we get

|ui(k + 1)| ≤ max{|1− θiib
l
i(mi − ε)θii |, |1− θiib

u
i (Mi + ε)θii |}|ui(k)|

+

n∑
j=1,j ̸=i

θijc
u
ij(Mj + ε)θij

dij
|uj(k)|, i = 1, 2, · · · , n, (4.9)

for k ≥ k0.

In view of (4.9), we get

max
1≤i≤n

|ui(k + 1)| ≤ ρ max
1≤i≤n

|ui(k)|, k ≥ k0.

This implies

max
1≤i≤n

|ui(k)| ≤ ρk−k0 max
1≤i≤n

|ui(k0)|, k ≥ k0.

Then (4.8) holds and we can obtain

lim
k→+∞

|xi(k)− pi(k)| = 0, i = 1, 2, · · · , n. (4.10)

Now, we show that there is only one positive almost periodic solution of system (1.1). For any two positive

almost periodic solutions p(k) = (p1(k), p2(k), · · · , pn(k))T and z(k) = (z1(k), z2(k), · · · , zn(k))T of system

(1.1), we claim that pi(k) = zi(k)(i = 1, 2, · · · , n) for all k ∈ Z+. Otherwise there must be at least one positive

integer K∗ ∈ Z+ such that pi(K
∗) ̸= zi(K

∗) for a certain positive integer i, i.e., Ω = |pi(K∗) − zi(K
∗)| > 0.

So we can easily know that

Ω = | lim
p→+∞

pi(K
∗ + δp)− lim

p→+∞
zi(K

∗ + δp)| = lim
p→+∞

|pi(K∗ + δp)− zi(K
∗ + δp)| = lim

k→+∞
|pi(k)− zi(k)| > 0,

which is a contradiction to (4.10). Thus pi(k) = qi(k)(i = 1, 2, · · · , n) holds for ∀k ∈ Z+. Therefore, system

(1.1) admits a unique almost periodic solution which is globally attractive. This completes the proof of

Theorem 4.1. 2
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5 Numerical Simulations

Example 5.1 Consider the discrete multispecies Gilpin-Ayala mutualism system:



x1(k + 1) = x1(k) exp

{
1.26− 0.02 cos(

√
2k)− (1.25− 0.01 sin(

√
3k))x

1
2
1 (k)

+(0.025 + 0.002 cos(
√
5k))

x
1
3
2 (k)

3 + x
1
3
2 (k)

+ (0.02 + 0.001 cos(
√
2k))

x
2
3
3 (k)

1 + x
2
3
3 (k)

}
,

x2(k + 1) = x2(k) exp

{
1.13− 0.025 cos(

√
3k) + (0.02− 0.003 sin(

√
5k))

x1(k)

1 + x1(k)

−(1.18 + 0.015 sin(
√
2k))x

1
3
2 (k) + (0.025 + 0.002 cos(

√
5k))

x
3
2
3 (k)

2 + x
3
2
3 (k)

}
,

x3(k + 1) = x3(k) exp

{
1.12− 0.03 cos(

√
3k) + (0.03− 0.0025 cos(

√
3k))

x
1
2
1 (k)

1 + x
1
2
1 (k)

+(0.028 + 0.0015 cos(
√
2k))

x2(k)

2 + x2(k)
− (1.178 + 0.02 sin(

√
5n))x

1
3
3 (k)

}
.

(5.1)

A computation shows that

ρ1 ≈ 0.0591, ρ2 ≈ 0.1004, ρ3 ≈ 0.0731,

that max{ρ1, ρ2, ρ3} < 1. Hence, there exists a unique globally attractive almost periodic solution of system

(5.1). Our numerical simulations support our results(see Figs.1,2 and 3).
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0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

time k

x 1(k
)

FIGURE1: Dynamic behavior of the first component x1(k) of the solution (x1(k), x2(k), x3(k)) to system

(5.1) with the initial conditions (0.98,0.9,0.99), (1,0.94,1.05) and (1.03,0.87,1.1) for k ∈ [1, 100], respectively.
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FIGURE2: Dynamic behavior of the second component x2(k) of the solution (x1(k), x2(k), x3(k)) to system

(5.1) with the initial conditions (0.98,0.9,0.99), (1,0.94,1.05) and (1.03,0.87,1.1) for k ∈ [1, 100], respectively.

0 20 40 60 80 100
0.95

1

1.05

1.1

1.15

time k

x 3(k
)

FIGURE3: Dynamic behavior of the third component x3(k) of the solution (x1(k), x2(k), x3(k)) to system

(5.1) with the initial conditions (0.98,0.9,0.99), (1,0.94,1.05) and (1.03,0.87,1.1) for k ∈ [1, 100], respectively.

6 Concluding Remarks

In this paper, assuming that the coefficients in system (1.1) are bounded non-negative almost periodic

sequences, we obtain the sufficient conditions for the existence of a unique almost periodic solution which is

globally attractive. Furthermore, for the almost periodic discrete multispecies Gilpin-Ayala mutualism system

(1.1) with time delays or feedback controls, we would like to mention here the question of how to study the

almost periodicity of the system and whether the existence of a unique almost periodic solution is determined

by the global attractivity of the system or not. It is, in fact, a very challenging problem, and we leave it for

our future work.
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